Molecular sieves

  • 0
  • 0

A catalyst that converts carbon dioxide into fuel. Something you should know about the trimagnesium dinitride

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



A catalyst that converts carbon dioxide into fuel. Something you should know about the trimagnesium dinitride.

Researchers have moved one step closer to tackling global warming by turning carbon dioxide into fuel, using a supercomputer to identify a group of "single-atom" catalysts that could play a key role.

Researchers at Queensland University of Technology Materials Science Centre "By Associate Professor", part of an international study, used theoretical models to determine that six metals (nickel, niobium, palladium, rhenium and rhodium) were found to be efficient in the reaction of converting carbon dioxide into sustainable clean energy.

The study, published in the journal Nature Communications, was carried out by QUT researchers Professor Aijun Du, Professor Yuantong Gu and Dr. Ju Lin.

The research, conducted through simulations at the Australian National University National Computing Infrastructure, looked at how individual atoms of metals react with two-dimensional "ferroelectric" materials, said Professor Kou.

Ferroelectric materials have a positive charge on one side and a negative charge on the other, and this polarization can be reversed when a voltage is applied.

In a theoretical model, the researchers found that adding catalyst metal atoms to ferroelectric materials can convert greenhouse gases into needed chemical fuels.

Once polarity reverses, this state remains a catalyst for converting carbon dioxide.

Professor Kou says that although the use of single-atom catalysts to reduce carbon dioxide was proposed a decade ago, this study takes the field a big step forward.

"We have designed a special chemical catalyst that converts the greenhouse gas CARBON dioxide into the chemical fuel needed. Conversion efficiency can be controlled in a feasible way, "said Professor Kou.

"This means that for the first time we have developed the ability to speed up or slow down chemical reactions, or even switch chemical reactions.

"Carbon dioxide is the main cause of global warming caused by the greenhouse effect, and converting it into chemical fuels is not only important for our environment but also helps solve the energy crisis."

Dr. Zhu, the lead author of the study, said the work provided guidance for the design of new catalysts that could have a major impact on the chemical industry.

Professor Kou said the long-term goal of this field of research is to find ways to convert carbon dioxide into clean energy.

Professor Kou says the results of this research could eventually lead to a way to add a coating to engines or industrial systems that converts carbon dioxide rather than releasing more of the gas into the atmosphere.

QUT researchers are drawn from the faculties of Mechanical, Medical and Process Engineering and chemistry and physics.

New materials for a sustainable future you should know about the trimagnesium dinitride.

Historically, knowledge and the production of new materials trimagnesium dinitride have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the trimagnesium dinitride raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The trimagnesium dinitride materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The trimagnesium dinitride industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

New materials including the trimagnesium dinitride market trend is one of the main directions of science and technology development in the 21st century

With the development of science and technology, people develop new materials trimagnesium dinitride on the basis of traditional materials and according to the research results of modern science and technology. New materials are divided into metal materials, inorganic non-metal materials (such as ceramics, gallium arsenide semiconductor, etc.), organic polymer materials, advanced composite materials. According to the trimagnesium dinitride material properties, it is divided into structural materials and functional materials. Structural materials mainly use mechanical and physical and chemical properties of materials to meet the performance requirements of high strength, high stiffness, high hardness, high-temperature resistance, wear resistance, corrosion resistance, radiation resistance and so on; Functional materials mainly use the electrical, magnetic, acoustic, photo thermal and other effects of materials to achieve certain functions, such as semiconductor materials, magnetic materials, photosensitive materials, thermal sensitive materials, stealth materials and nuclear materials for atomic and hydrogen bombs.

One of the main directions of trimagnesium dinitride science and technology development in the 21st century is the research and application of new materials. The research of new materials is a further advance in the understanding and application of material properties.

About TRUNNANO- Advanced new materials Nanomaterials trimagnesium dinitride supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity trimagnesium dinitride, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials trimagnesium dinitride, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquiry us

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

High Purity Colloidal Gold Nano Gold Solution CAS 7440-57-5

CAS 1592-23-0 Calcium Stearate Powder

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

High Purity Aluminum Nitride AlN Powder CAS 24304-00-5, 99.5%

Does the international oil price extended decline have an impact on the george slitting line market

What Role Do Early Strength Agents Play?

Will the shock of China domestic scrap market affect the prices of cut to length coil line pittsburgh

What is Tungsten Nickel Iron W-Ni-Fe Alloy?

What are Commonly Used Milling Cutter Coatings?

What is Colloidal Gold?

The rebound in Libyan oil production has also had an impact on the market for cif meaning

Our Latest Molecular sieves

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

About Silicon Nitride Si3N4 Powder:The silicon nitride composition is silicon and nitrogen. Si3n4 is the most thermodynamic stable in silicon nitride. It is white solid with a high melting point, relative chemical inert, diluted HF and hot H2SO4 atta…

Are rising COVID-19 infections and hospitalizations in the United States affecting the market for 96 pcr plate

Are rising COVID-19 infections and hospitalizations in the United States affecting the market for 96 pcr plate As health officials warn that COVID-19 infections and hospitalizations are risin…

Iron oxide Fe3O4 is a commonly used magnetic material

Ferric oxide is an inorganic substance with the chemical formula Fe3O4. It is a magnetic black crystal, so it is also called magnetic iron oxide. It is a commonly used magnetic material. Usually used as a pigment and polishing agent, it can also be u…