Hydride Powder

  • 0
  • 0

Nano-diamond is the key to efficient hydrogen purification, the superplasticizer introduction of new materials

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Nano-diamond is the key to efficient hydrogen purification, the superplasticizer introduction of new materials.

Nanodiamonds may be small, but they could help solve one of the biggest problems facing humanity today: climate change

Hydrogen is a clean fuel, leaving only water behind. Many countries see hydrogen as the way to a zero-carbon future, but switching to a hydrogen economy requires hydrogen to be produced much cheaper than it is today.

Professor Easan Sivaniah, iCeMS team leader, said: "There are several scalable ways to produce hydrogen, but hydrogen is usually a wet mixture and their purification is a challenge." "Membrane technology allows for an efficient and economical separation process. But we need the right membrane material to make it work." Sivaniah adds. Graphene oxide (GO) is a water-soluble derivative of graphite that can be assembled into a membrane for hydrogen purification. Hydrogen easily passes through these filters, and larger molecules get stuck. Hydrogen is usually separated from carbon dioxide or oxygen under very humid conditions. The go sheets are negatively charged, causing them to repel each other. When exposed to humidity, the negatively charged SHEETS repel each other, allowing water molecules to accumulate in the Spaces between the sheets, eventually dissolving the film. Dr Behnam Ghalei, who helped oversee the study, explained that adding nano-diamonds to the go flakes could solve the problem of humidity induced disintegration. "The positively charged nano-diamond counteracts the negative charge of the film, making the GO sheet denser and more water-resistant."

The team also includes other research groups from Japan and abroad. Advanced X-ray research was carried out by researchers at the Japan Synchrotron Radiation Research Institute (SPRING-8 / JASRI). The Quantum Life Sciences Institute (QST) helped develop the material. Shanghai University of Science and Technology (China) and National Central University (Taiwan) were involved in state-of-the-art material characterization. "In our collaboration with Dr. Ryuji Igarashi at QST, we were able to obtain nanodiamonds with well-defined sizes and functions that would not have been possible without these studies," Sivaniah said. "Importantly, Igarashi team has a proprietary technology that could scale up nanodiamond production at a reasonable cost in the future." Nanodiamonds have other potential uses beyond hydrogen production, Sivaniah says. Humidity control is also crucial in many other areas, including pharmaceuticals, semiconductors and lithium-ion battery production. Membrane technology can also revolutionize air conditioning by effectively removing humidity. Air conditioning is one of the least efficient ways to cool down because a lot of electricity is used to remove humidity, creating more carbon dioxide emissions and creating a vicious cycle of global warming. The Japanese government is firmly committed to a zero-carbon future. China has also set up a $20 billion Green Innovation Fund to support cooperation between major industry players and start-ups that bring new technologies to the market.

New materials for a sustainable future you should know about the superplasticizer.

Historically, knowledge and the production of new materials superplasticizer have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the superplasticizer raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The superplasticizer materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The superplasticizer industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

New materials including the superplasticizer market trend is one of the main directions of science and technology development in the 21st century

With the development of science and technology, people develop new materials superplasticizer on the basis of traditional materials and according to the research results of modern science and technology. New materials are divided into metal materials, inorganic non-metal materials (such as ceramics, gallium arsenide semiconductor, etc.), organic polymer materials, advanced composite materials. According to the superplasticizer material properties, it is divided into structural materials and functional materials. Structural materials mainly use mechanical and physical and chemical properties of materials to meet the performance requirements of high strength, high stiffness, high hardness, high-temperature resistance, wear resistance, corrosion resistance, radiation resistance and so on; Functional materials mainly use the electrical, magnetic, acoustic, photo thermal and other effects of materials to achieve certain functions, such as semiconductor materials, magnetic materials, photosensitive materials, thermal sensitive materials, stealth materials and nuclear materials for atomic and hydrogen bombs.

One of the main directions of superplasticizer science and technology development in the 21st century is the research and application of new materials. The research of new materials is a further advance in the understanding and application of material properties.

About TRUNNANO- Advanced new materials Nanomaterials superplasticizer supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity superplasticizer, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials superplasticizer, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

 

Inquiry us

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

High Purity Colloidal Gold Nano Gold Solution CAS 7440-57-5

CAS 1592-23-0 Calcium Stearate Powder

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

High Purity Aluminum Nitride AlN Powder CAS 24304-00-5, 99.5%

Does the international oil price extended decline have an impact on the george slitting line market

What Role Do Early Strength Agents Play?

Will the shock of China domestic scrap market affect the prices of cut to length coil line pittsburgh

What is Tungsten Nickel Iron W-Ni-Fe Alloy?

What are Commonly Used Milling Cutter Coatings?

What is Colloidal Gold?

The rebound in Libyan oil production has also had an impact on the market for cif meaning

Our Latest Hydride Powder

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

Now China has become a powerful country in science and technology, but do you know how powerful China's technology is? The manned space station alone is not enough, and now it has successfully broken through the key technology of nuclear fusion, even…

What is Zinc Stearate Used For?

For billionaires, the new crown epidemic is like a 'gold rush'! The Deutsche Presse-Agentur said on the 17th that in 2022, the wealth held by the world's top ten richest people will jump from $700 billion to $1.5 trillion, an average daily increase o…

What are CLC Concrete Advantages?

Foamed concrete has good physical properties, combining insulation and electrical resistance. It has many benefits that make it one of the best alternatives to building materials.…